Wie finden Sie zwei Einheitsvektoren, die einen Winkel von 60 ° mit v = ‹3, 4› bilden?

Antworten:

Der Bedarf. Einheitsvektoren sind, #(3/10-2/5sqrt3,2/5+3sqrt3/10)#, oder,

#(3/10+2sqrt3/5, 2/5-3sqrt3/10)#.

Erläuterung:

Lassen #vecu=(x,y)# sei der Anforder. Einheitsvektor.

#:. ||vecu||=1 rArr x^2+y^2=1.................(1)#.

Angesichts dessen, Angle BTWN. #vecu and vecv# is #pi/3#Wir nehmen das Skalarprodukt dieser Vektoren, um Folgendes zu erhalten:

#vecu*vecv=||u||||v||cos(hat(vecu, vecv))#

#:. (x,y)*(3,4)=1(sqrt(3^2+4^2))cos(pi/3)#

#:. 3x+4y=1*5*1/2=5/2 rArr 3x=5/2-4y#

#rArr x=1/3(5/2-4y).......................(2)#.

Mit #(2)# in #(1)#, wir bekommen,

#1/9(5/2-4y)^2+y^2=1rArr25/4-20y+16y^2+9y^2=9#

#rArr 25y^2-20y=9-25/4#.

Um das zu machen #L.H.S.# komplettes Quadrat, fügen wir hinzu #4# auf beiden Seiten.

#:. 25y^2-20y+4=9-25/4+4#.

#:. (5y-2)^2=27/4#

#:. 5y-2=+-3sqrt3/2, i.e., 5y=2+-3sqrt3/2, so, y=2/5+-3sqrt3/10#

By #(2)#, dann, #x=1/3{5/2-4(2/5+-3sqrt3/10)}#.

Damit ist die Anforder. Einheitsvektoren sind, #(3/10-2/5sqrt3,2/5+3sqrt3/10)#, oder,

#(3/10+2sqrt3/5, 2/5-3sqrt3/10)#.

Eine alternative Methode, um dieses Problem zu lösen, ist, anstatt zu starten

mit #vecu=(x,y)#können wir annehmen, dass

#vecu=(costheta,sintheta)#wo wir können, vorzugsweise einschränken

#theta in [0,pi/2]#.