Wie faktoriert man Sin ^ 3X - Cos ^ 3X sin3Xcos3X?

Antworten:

Die Antwort ist =1/2(sinx-cosx)(2+sin(2x))=12(sinxcosx)(2+sin(2x))

Erläuterung:

Wir bewerben uns

a^3-b^3=(a-b)(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2)

Hier

a=sinxa=sinx

und

b=cosxb=cosx

Damit,

sin^3x-cos^3x=(sinx-cosx)(sin^2x+sinxcosx+cos^2x)sin3xcos3x=(sinxcosx)(sin2x+sinxcosx+cos2x)

Aber

sin^2x+cos^2x=1sin2x+cos2x=1

Deswegen,

sin^3x-cos^3x=(sinx-cosx)(1+sinxcosx)sin3xcos3x=(sinxcosx)(1+sinxcosx)

=(sinx-cosx)(1+(sin2x)/2)=(sinxcosx)(1+sin2x2)

=1/2(sinx-cosx)(2+sin(2x))=12(sinxcosx)(2+sin(2x))