Wie löst man die Identität #cos3x = 4cos ^ 3x - 3cosx #?
Antworten:
Siehe Erklärung.
Erläuterung:
Also werden wir das beweisen #cos3x=4cos^3x-3cosx#
#[1]color(white)(XX)cos3x#
#[2]color(white)(XX)=cos(x+2x)#
Winkelsummenidentität: #cos(alpha+beta)=cosalphacosbeta-sinalphasinbeta#
#[3]color(white)(XX)=cosxcos2x-sinxsin2x#
Doppelte Winkelidentität: #cos2alpha=2cos^2alpha-1#
#[4]color(white)(XX)=cosx(2cos^2x-1)-sinxsin2x#
#[5]color(white)(XX)=2cos^3x-cosx-sinxsin2x#
Doppelte Winkelidentität: #sin2alpha=2sinalphacosalpha#
#[6]color(white)(XX)=2cos^3x-cosx-sinx(2sinxcosx)#
#[7]color(white)(XX)=2cos^3x-cosx-sin^2x(2cosx)#
Pythagoreische Identität: #sin^2alpha=1-cos^2alpha#
#[8]color(white)(XX)=2cos^3x-cosx-(1-cos^2x)(2cosx)#
#[9]color(white)(XX)=2cos^3x-cosx-(2cosx-2cos^3x)#
#[10]color(white)(XX)=2cos^3x-cosx-2cosx+2cos^3x#
Kombiniere gleiche Begriffe.
#[11]color(white)(XX)=4cos^3x-3cosx#
#color(blue)( :.cos3x=4cos^3x-3cosx)#