Wie löst man die Identität #cos3x = 4cos ^ 3x - 3cosx #?

Antworten:

Siehe Erklärung.

Erläuterung:

Also werden wir das beweisen #cos3x=4cos^3x-3cosx#

#[1]color(white)(XX)cos3x#

#[2]color(white)(XX)=cos(x+2x)#

Winkelsummenidentität: #cos(alpha+beta)=cosalphacosbeta-sinalphasinbeta#

#[3]color(white)(XX)=cosxcos2x-sinxsin2x#

Doppelte Winkelidentität: #cos2alpha=2cos^2alpha-1#

#[4]color(white)(XX)=cosx(2cos^2x-1)-sinxsin2x#

#[5]color(white)(XX)=2cos^3x-cosx-sinxsin2x#

Doppelte Winkelidentität: #sin2alpha=2sinalphacosalpha#

#[6]color(white)(XX)=2cos^3x-cosx-sinx(2sinxcosx)#

#[7]color(white)(XX)=2cos^3x-cosx-sin^2x(2cosx)#

Pythagoreische Identität: #sin^2alpha=1-cos^2alpha#

#[8]color(white)(XX)=2cos^3x-cosx-(1-cos^2x)(2cosx)#

#[9]color(white)(XX)=2cos^3x-cosx-(2cosx-2cos^3x)#

#[10]color(white)(XX)=2cos^3x-cosx-2cosx+2cos^3x#

Kombiniere gleiche Begriffe.

#[11]color(white)(XX)=4cos^3x-3cosx#

#color(blue)( :.cos3x=4cos^3x-3cosx)#