Wie finden Sie die Ableitung von # 1 / sinx #?

Antworten:

# d/dx (1/sinx)= -cotx cscx #

Erläuterung:

Es gibt verschiedene Methoden, um dies zu tun:

Lassen # y= 1/sinx (=cscx)#

Methode 1 - Kettenregel

Neu anordnen als # y=(sinx)^-1# und verwende die Kettenregel:
# { ("Let "u=sinx, => , (du)/dx=cosx), ("Then "y=u^-1, =>, dy/(du)=-u^-2=-1/u^2 ) :}#

# dy/dx=(dy/(du))((du)/dx) #
# :. dy/dx = (-1/u^2)(cosx) #
# :. dy/dx = -cosx/sin^2x #
# :. dy/dx = -cosx/sinx * 1/sinx #
# :. dy/dx = -cotx cscx #

Methode 2 - Quotientenregel

# { ("Let "u=1, => , (du)/dx=0), ("And "v=sinx, =>, (dv)/dx=cosx ) :}#

# d/dx(u/v) = (v(du)/dx-u(dv)/dx)/v^2 #
# :. dy/dx = ( (sinx)(0) - (1)(cosx) ) / (sinx)^2#
# :. dy/dx = -cosx / sin^2x #
# :. dy/dx = -cosx/sinx * 1/sinx #
# :. dy/dx = -cotx cscx #