Y = x ^ 2-6x + 7 in Scheitelpunktform?
Antworten:
y=(x-3)^2-2y=(x−3)2−2
Erläuterung:
"the equation of a parabola in "color(blue)"vertex form"the equation of a parabola in vertex form is.
color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))
"where "(h,k)" are the coordinates of the vertex and a"
"is a multiplier""given the parabola in "color(blue)"standard form";y=ax^2+bx+c
"then the x-coordinate of the vertex is"
•color(white)(x)x_(color(red)"vertex")=-b/(2a)
y=x^2-6x+7" is in standard form"
"with "a=1,b=-6" and "c=7
x_("vertex")=-(-6)/2=3
"substitute this value into the equation for y"
y_("vertex")=9-18+7=-2
(h,k)=(3,-2)
y=(x-3)^2-2larrcolor(red)"in vertex form"