Wie viele Seiten hat ein reguläres Polygon mit einem Außenwinkel von 40 °?

Antworten:

Ein regelmäßiges Polygon mit Außenwinkeln von 40^o hätte 9 Seite und wäre ein Nonagon.

Erläuterung:

Die Außenwinkel eines regulären Polygons müssen sich addieren 360^o.

Da das in den Fragen angegebene Winkelmaß s 40^o, nehmen 360^o/40^o = 9. Das heißt, es gibt 9-Außenwinkel und daher 9-Seiten zum Polygon.

Bildquelle hier eingeben

Ein reguläres Polygon bezieht sich auf eine mehrseitige konvexe Figur, bei der alle Seiten gleich lang sind und alle Winkel das gleiche Maß haben.
Bildquelle hier eingeben

Bildquelle hier eingeben

Das reguläre Dreieck hat 3 Innenwinkel von 60^o und 3 Außenwinkel von 120^o. Die Außenwinkel haben eine Summe von 360^o =(3)120^o

Das Quadrat hat 4 Innenwinkel von 90^o und 4 Außenwinkel von 90^o. Die Außenwinkel haben eine Summe von 360^o =(4)90^o.

Das Quadrat hat 5 Innenwinkel von 108^o und 5 Außenwinkel von 72^o. Die Außenwinkel haben eine Summe von 360^o =(5)72^o.

Um den Wert des Innenwinkels eines regulären Polygons zu ermitteln, lautet die Gleichung ((n-2)180)/n Dabei ist n die Anzahl der Seiten des regulären Polygons.

Dreieck ((3-2)180)/3 = 60^o
Quadratische Form ((4-2)180)/4 = 90^o
Pentagon ((5-2)180)/5 = 72^o

Endlich

Die Innen- und Außenwinkel eines regelmäßigen Polygons bilden ein lineares Paar und sind daher ergänzend und müssen sich summieren 180^o.