Wie verwendet man die Substitution, um #sqrt (4-x ^ 2) dx # zu integrieren?

Dies kann durch Triggersubstitution erfolgen. Beachte wie

#sqrt(a^2 - x^2) prop sqrt(a^2 - a^2sin^2theta) prop sqrt(4 - x^2)#
woher #a = 2#

also lass:
#x = 2sintheta#
#dx = 2costhetad theta#
#sqrt(4-x^2) = 2costheta#

#=> int 2costheta*2costhetad theta#

#= 4int cos^2thetad theta#

Jetzt können Sie die Identität verwenden:
#cos^2theta = (1+cos(2theta))/2#

So:
#= 2int d theta + 2int cos(2theta)d theta#

#= 2int d theta + 2*1/2int 2cos(2theta)d theta#

#= 2theta + sin(2theta) + C#

Da #x = 2sintheta#, #theta = arcsin(x/2)#.
Da #sin(2theta) = 2sinthetacostheta#:

#sin(2theta) = (xsqrt(4-x^2))/2#

#=> color(blue)(2arcsin(x/2) + (xsqrt(4-x^2))/2 + C)#

Schreibe einen Kommentar