Wie kann man #int cos ^ 2x # durch die Methode der Integration nach Teilen integrieren?
Antworten:
#x/2+1/2sin x cos x + c#
Erläuterung:
Wenn Sie wirklich nach Teilen integrieren möchten, wählen Sie #u=cos x#, #dv= cos x dv#, #du=-sin xdx#, #v = sin x#.
#int udv = uv - int v du#
#int cosx cosx dx= cos x sinx - int sin x (-sin x)dx#
#int cos^2 x dx= cos x sin x + int (1 - cos^2x)dx#
#int cos^2 x dx= cos x sin x + int 1 dx - int cos^2x dx#
Nun zum hinterhältigen Teil: Nehmen Sie das Integral rechts über links:
#2int cos^2x dx = cos x sin x + x#
Daher
#int cos^2xdx = 1/2 x + 1/2 sin x cos x#
Ein kürzerer Weg ist jedoch die Verwendung der Identitäten #cos2x = cos^2x-sin^2x = 2 cos^2 x - 1 = 1 - 2sin^2 x# und #sin2x=2sinxcosx#.
#int cos^2 x=int (1+cos2x)/2dx#
#=int1/2 dx + 1/2 int cos2x dx#
#=1/2x +1/2sin 2x+c#
#=1/2x+sinxcosx+c#