Wie findet man alle Lösungen von #sin (x / 2) + cosx-1 = 0 # im Intervall # [0,2pi) #?

Antworten:

#x=0, pi/3, 5pi/3.#

Erläuterung:

#sin(x/2)+cosx-1=0.#

# :. sin(x/2)=1-cosx=2sin^2(x/2).#

# :. sin(x/2)-2sin^2(x/2)=0.#

# :. sin(x/2){1-2sin(x/2)}=0.#

# :. sin(x/2)=0, or, sin(x/2)=1/2=sin(pi/6).#

#"But, "x in [0,2pi) :. 0lexlt2pi :. 0lex/2ltpi.#

# :. sin(x/2)=0 rArr x/2=0 :. x=0.#

Ebenso #sin(x/2)=sin(pi/6) rArr x/2=pi/6, pi-pi/6=5pi/6.#

#:. x=pi/3, 5pi/3.#

Insgesamt, #x=0, pi/3, 5pi/3.#

Schreibe einen Kommentar