Wie benutzt man die L'hospital-Regel, um das Limit #lim_ (x-> oo) x ^ 3e ^ (- x ^ 2) # zu finden?
Durch Umschreiben
#lim_{x to infty}x^3e^{-x^2}
=lim_{x to infty}{x^3}/{e^{x^2}}#
nach der Regel von l'Hopital,
#=lim_{x to infty}{3x^2}/{2xe^{x^2}}=lim_{x to infty}{3x}/{2e^{2x^2}}#
durch eine andere l'Hopital Regel,
#=lim_{x to infty}{3}/{4xe^{x^2}}=3/infty=0#