Was ist die Wellenlänge eines Elektrons, das sich mit 5x10 ^ 5 m / s bewegt?
#lambda = "1.455 nm"#
Sie können die Verwendung de Broglie-Beziehung, da ein Elektron Masse hat. Was ist die Geschwindigkeit eines Photons im Vakuum mit einer Wellenlänge von #"0.1 nm"#?
Die Beziehung ist:
#lambda = h/p = h/(mv)#
where:
- #lambda# is the wavelength in #"m"#.
- #h = 6.626 xx 10^(-34) "J"cdot"s"# is Planck's constant.
- #m# is the mass of the particle, such as the electron, in #"kg"#. The particle must have a mass for this relation to work.
- #v# is the forward velocity of the particle, in #"m/s"#.
Daher ist die Wellenlänge:
#lambda = (6.626 xx 10^(-34) "J"cdot"s")/((9.1094 xx 10^(-31) "kg")(5 xx 10^(5) "m/s"))#
Wir wissen, dass #"1 J" = "1 kg" cdot "m"^2"/s"^2#. So:
#color(blue)(lambda) = (6.626 xx 10^(-34) cancel"kg" cdot "m"^(cancel(2))"/"cancel"s")/((9.1094 xx 10^(-31) cancel"kg")(5 xx 10^(5) cancel"m""/"cancel"s"))#
#= 1.455 xx 10^(-9)# #"m"#
#=# #color(blue)("1.455 nm")#
Warum funktioniert das bei einem Photon nicht?