Was ist die Ableitung von arctan (x / 2) ?
Antworten:
2/(4+x^2)
Erläuterung:
differentiate using the color(blue)"chain rule"
color(red)(|bar(ul(color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))........ (A)
Note that x/2=1/2x
let color(blue)(u=1/2x)rArr(du)/(dx)=1/2
color(orange)"Reminder" color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(arctanx)=1/(1+x^2))color(white)(a/a)|)))
and y=arctancolor(blue)(u)rArr(dy)/(du)=1/(1+color(blue)(u)^2
Substitute these values into (A) and convert u back into terms of x.
dy/dx=1/(1+(x/2)^2)xx1/2=(1/2)/((1+x^2/4))=(1/2)/(1/4(4+x^2))
rArrdy/dx=2/(4+x^2)