Wie vereinfacht man sqrt (1 + tan ^ 2x) ?

Antworten:

sqrt(1+tan^2 x) = abs(sec x)

Erläuterung:

Mit:

cos^2 x + sin^2 x = 1

tan x = sin x / cos x

sec x = 1/cos x

wir finden:

sqrt(1+tan^2 x) = sqrt(1+(sin^2 x)/(cos^2 x))

color(white)(sqrt(1+tan^2 x)) = sqrt((cos^2 x)/(cos^2 x)+(sin^2 x)/(cos^2 x))

color(white)(sqrt(1+tan^2 x)) = sqrt((cos^2 x+sin^2 x)/(cos^2 x))

color(white)(sqrt(1+tan^2 x)) = sqrt(1/(cos^2 x))

color(white)(sqrt(1+tan^2 x)) = sqrt(sec^2 x)

color(white)(sqrt(1+tan^2 x)) = abs(sec x)