Wie unterscheidet man y = ln (1 + x ^ 2) y=ln(1+x2)?

Antworten:

dy/dx=(2x)/(1+x^2)dydx=2x1+x2

Erläuterung:

differentiate using the color(blue)"chain rule"chain rule

That is color(red)(|bar(ul(color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))........ (A)∣ ∣ ∣¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯aadydx=dydu×dudxaa−−−−−−−−−−−−−−−−−........(A)

color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(lnx)=1/x)color(white)(a/a)|)))Reminder ∣ ∣ ∣¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯aaddx(lnx)=1xaa−−−−−−−−−−−−−−−

let u=1+x^2rArr(du)/(dx)=2xu=1+x2dudx=2x

and so y=lnurArr(dy)/(du)=1/uy=lnudydu=1u

substitute these values into (A) changing u back to terms of x.

rArrdy/dx=1/u(2x)=(2x)/(1+x^2)dydx=1u(2x)=2x1+x2