Wie finden Sie das Integral von sin ^ 2 (2x) dx ?

Antworten:

Die Antwort ist =x/2-(sin4x)/8+C

Erläuterung:

Wir verwenden

cos4x=1-2sin^2(x)

sin^2 2x=1/2(1-cos4x)

Deswegen,

int(sin^2 2x)dx=1/2int(1-cos4x)dx

=1/2(x-(sin4x)/4)+C

=x/2-(sin4x)/8+C