Wie finden Sie das Integral von sin ^ 2 (2x) dx ?
Antworten:
Die Antwort ist =x/2-(sin4x)/8+C
Erläuterung:
Wir verwenden
cos4x=1-2sin^2(x)
sin^2 2x=1/2(1-cos4x)
Deswegen,
int(sin^2 2x)dx=1/2int(1-cos4x)dx
=1/2(x-(sin4x)/4)+C
=x/2-(sin4x)/8+C