Wie verifizieren Sie die Identität (csctheta-cottheta) (csctheta + cottheta) = 1 ?
Wir haben: (csc(theta) - cot(theta)) (csc(theta) + cot(theta))
Lassen Sie uns die Klammern erweitern:
= (csc(theta)) (csc(theta)) + (csc(theta)) (cot(theta)) + ( - cot(theta) (csc(theta)) + (- cot(theta)) (cot(theta))
= csc^(2)(theta) + csc(theta) cot (theta) - csc(theta) cot(theta) - cot^(2)(theta)
csc^(2)(theta) - cot^(2)(theta)
Wenden wir dann zwei trigonometrische Standardidentitäten an. csc(theta) = (1) / (sin(theta)) und cot(theta) = (cos(theta)) / (sin(theta)):
= ((1) / (sin(theta)))^(2) - ((cos(theta)) / (sin(theta)))^(2)
= (1) / (sin^(2)(theta)) - (cos^(2)(theta)) / (sin^(2)(theta))
= (1 - cos^(2)(theta)) / (sin^(2)(theta))
Eine der pythagoreischen Identitäten ist cos^(2)(theta) + sin^(2)(theta) = 1.
Wir können dies neu anordnen, um Folgendes zu erhalten:
=> sin^(2)(theta) = 1 - cos^(2)(theta)
Wenden wir diese neu arrangierte Identität auf unseren Beweis an:
= (sin^(2)(theta)) / (sin^(2)(theta))
=1 (QED)