Wie löst man cos x - cos 2x = 0 cosxcos2x=0?

Verwenden Sie die Eigenschaft: cos 2A=2cos^-2A-1cos2A=2cos2A1

cosx-(2cos^2x -1)=0cosx(2cos2x1)=0

-1 [cosx -2cos^2x+1]=01[cosx2cos2x+1]=0

2cos^2x-cosx-1=02cos2xcosx1=0

(2cosx+1)(cosx-1)=0(2cosx+1)(cosx1)=0

cosx=-1/2 or cos x=1cosx=12orcosx=1

x=cos^-1(-1/2) or x=cos^-1 1x=cos1(12)orx=cos11

x=+- (2pi)/3 + 2pin or x=0+2pinx=±2π3+2πnorx=0+2πn

S={+- (2pi)/3 + 2pin , 0+2pin}S={±2π3+2πn,0+2πn}