Wie löst man cos x - cos 2x = 0 cosx−cos2x=0?
Verwenden Sie die Eigenschaft: cos 2A=2cos^-2A-1cos2A=2cos−2A−1
cosx-(2cos^2x -1)=0cosx−(2cos2x−1)=0
-1 [cosx -2cos^2x+1]=0−1[cosx−2cos2x+1]=0
2cos^2x-cosx-1=02cos2x−cosx−1=0
(2cosx+1)(cosx-1)=0(2cosx+1)(cosx−1)=0
cosx=-1/2 or cos x=1cosx=−12orcosx=1
x=cos^-1(-1/2) or x=cos^-1 1x=cos−1(−12)orx=cos−11
x=+- (2pi)/3 + 2pin or x=0+2pinx=±2π3+2πnorx=0+2πn
S={+- (2pi)/3 + 2pin , 0+2pin}S={±2π3+2πn,0+2πn}