Wie finden Sie die x-Achsen einer quadratischen Funktion?
Eine quadratische Funktion hat eine allgemeine Form:
#y=ax^2+bx+c#
wobei a, b und c reelle Zahlen sind.
Diese Funktion kann mit einer PARABOLA (Kurve in Form eines aufwärts oder abwärts gerichteten U) aufgezeichnet werden.
Um die x-Abschnitte zu finden, müssen Sie y = 0; Auf diese Weise setzen Sie die Koordinate y der gesuchten Punkte auf Null.
Sie müssen nur noch die Koordinate x der Punkte finden.
Wenn y = 0, bleibt Ihnen Folgendes übrig: #0=ax^2+bx+c# Das ist eine Gleichung zweiten Grades.
Wenn Sie diese Gleichung lösen, finden Sie zwei Werte von x (x1 und x2), die zusammen mit y = 0 zu folgenden Abschnitten führen:
1 abfangen: (x1, 0)
2 abfangen: (x2, 0)
Denken Sie daran, dass eine Gleichung zweiten Grades auch Lösungen haben kann:
- Zufall (der Achsenabschnitt ist der VERTEX der Parabel)
- imaginär (Die Parabel schneidet nicht die x-Achse)
Abhängig von der Diskriminante der Gleichung.