Wie finden Sie die Quadratwurzel von 52?
Antworten:
sqrt(52) = 2sqrt(13) ~~ 7.21110
Erläuterung:
If a, b >= 0 dann sqrt(ab) = sqrt(a)sqrt(b), so:
sqrt(52) = sqrt(2^2*13) = sqrt(2^2)sqrt(13) = 2sqrt(13)
Wenn Sie eine Annäherung von Hand berechnen möchten, können Sie den Rat befolgen, den ich gegeben habe sqrt(28) in http://socratic.org/questions/how-do-you-find-the-square-root-28
Mit der dort beschriebenen Methode:
Lassen n = 52, p_0 = 7, q_0 = 1
Dann:
p_1 = 7^2+52*1^2 = 49+52 = 101
q_1 = 2*7*1 = 14
p_2 = 101^2+52*14^2 = 10201+10192 = 20393
q_2 = 2*101*14 = 2828
Wenn wir an dieser Stelle stehen bleiben, erhalten wir ein genaues Ergebnis 5 Nachkommastellen:
sqrt(52) ~~ 20393/2828 ~~ 7.21110