Welche quadratische Funktion wird unter Verwendung eines Directrix von y = -2 und eines Fokus von (1, 6) erzeugt? ein. f (x) = (1 / 8) (x-1) ^ 2 - 2 b. f (x) = - (1 / 8) (x + 1) ^ 2 - 2 c. f (x) = - (1 / 16) (x + 1) ^ 2 - 2 d. f (x) = (1 / 16) (x-1) ^ 2 + 2

Antworten:

f(x)=1/16(x-1)^2+2to(d)f(x)=116(x1)2+2(d)

Erläuterung:

"from any point "(x,y)" on the parabola the focus and"from any point (x,y) on the parabola the focus and
"directrix are equidistant"directrix are equidistant

"using the "color(blue)"distance formula"using the distance formula

sqrt((x-1)^2+(y-6)^2)=|y+2|(x1)2+(y6)2=|y+2|

color(blue)"squaring both sides"squaring both sides

(x-1)^2+(y-6)^2=(y+2)^2(x1)2+(y6)2=(y+2)2

(y-6)^2-(y+2)^2=-(x-1)^2(y6)2(y+2)2=(x1)2

cancel(y^2)-12y+36cancel(-y^2)-4y-4=-(x-1)^2

-16y+32=-(x-1)^2

-16y=-(x-1)^2-32

rArry=f(x)=1/16(x-1)^2+2to(d)