Was sind die sechs Triggerfunktionswerte von # -135 #?
Antworten:
Wie nachstehend.
Erläuterung:
#hat (-135) = -(3pi)/4 = 2pi - (3pi)/4 = (5pi)/4#
Der Winkel fällt in den III Quadranten, wo nur #tan, cot# sind positiv.
#sin ((5pi)/4) = sin (pi + (pi/4)) = - sin (pi/4) = - 1/sqrt2#
#csc ((5pi)/4) = csc (pi + (pi/4)) = - csc (pi/4) = - sqrt2#
#coc ((5pi)/4) = cos (pi + (pi/4)) = - cos (pi/4) = - 1/sqrt2#
#sec ((5pi)/4) = sec (pi + (pi/4)) = - sec (pi/4) = - sqrt2#
#tan ((5pi)/4) = tan (pi + (pi/4)) = tan (pi/4) = 1#
#cot ((5pi)/4) = cot (pi + (pi/4)) = cot (pi/4) = 1#