Was sind die sechs Triggerfunktionswerte von -135 −135?
Antworten:
Wie nachstehend.
Erläuterung:
hat (-135) = -(3pi)/4 = 2pi - (3pi)/4 = (5pi)/4ˆ−135=−3π4=2π−3π4=5π4
Der Winkel fällt in den III Quadranten, wo nur tan, cottan,cot sind positiv.
sin ((5pi)/4) = sin (pi + (pi/4)) = - sin (pi/4) = - 1/sqrt2sin(5π4)=sin(π+(π4))=−sin(π4)=−1√2
csc ((5pi)/4) = csc (pi + (pi/4)) = - csc (pi/4) = - sqrt2csc(5π4)=csc(π+(π4))=−csc(π4)=−√2
coc ((5pi)/4) = cos (pi + (pi/4)) = - cos (pi/4) = - 1/sqrt2coc(5π4)=cos(π+(π4))=−cos(π4)=−1√2
sec ((5pi)/4) = sec (pi + (pi/4)) = - sec (pi/4) = - sqrt2sec(5π4)=sec(π+(π4))=−sec(π4)=−√2
tan ((5pi)/4) = tan (pi + (pi/4)) = tan (pi/4) = 1tan(5π4)=tan(π+(π4))=tan(π4)=1
cot ((5pi)/4) = cot (pi + (pi/4)) = cot (pi/4) = 1cot(5π4)=cot(π+(π4))=cot(π4)=1