Der Punkt (-12, 4) liegt auf dem Graphen von y = f (x). Finden Sie den entsprechenden Punkt in der Grafik von y = g (x)? (Siehe unten)
Antworten:
- #(-12,2)#
- #(-10,4)#
- #(12,4)#
- #(-3,4)#
- #(-12,16)#
- #(-12, -4)#
Erläuterung:
1:
Dividing the function by 2 divides all the y-values by 2 as well. So to get the new point, we will take the y-value (#4#) and divide it by 2 to get #2#.
Therefore, the new point is #(-12,2)#
2:
Subtracting 2 from the input of the function makes all of the x-values increase by 2 (in order to compensate for the subtraction). We will need to add 2 to the x-value (#-12#) to get #-10#.
Therefore, the new point is #(-10, 4)#
3:
Making the input of the function negative will multiply every x-value by #-1#. To get the new point, we will take the x-value (#-12#) and multiply it by #-1# to get #12#.
Therefore, the new point is #(12,4)#
4:
Multiplying the input of the function by 4 makes all of the x-values be divided by 4 (in order to compensate for the multiplication). We will need to divide the x-value (#-12#) by #4# to get #-3#.
Therefore, the new point is #(-3,4)#
5:
Multiplying the whole function by #4# increases all y-values by a factor of #4#, so the new y-value will be #4# times the original value (#4#), or #16#.
Therefore, the new point is #(-12, 16)#
6:
Multiplying the whole function by #-1# also multiplies every y-value by #-1#, so the new y-value will be #-1# times the original value (#4#), or #-4#.
Therefore, the new point is #(-12, -4)#
Endgültige Antwort